

Contents lists available at ScienceDirect

# Journal of Solid State Chemistry



journal homepage: www.elsevier.com/locate/jssc

# Cerium luminescence in *nd*<sup>0</sup> perovskites

A.A. Setlur<sup>a,\*</sup>, U. Happek<sup>b</sup>

<sup>a</sup> GE Global Research Center, 1 Research Circle, Niskayuna, NY 12309, USA
 <sup>b</sup> Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA

#### ARTICLE INFO

Article history: Received 14 December 2009 Accepted 17 March 2010 Available online 20 March 2010

*Keywords:* Perovskites Ce<sup>3+</sup> Luminescence

#### ABSTRACT

The luminescence of  $Ce^{3+}$  in perovskite (ABO<sub>3</sub>) hosts with  $nd^0$  B-site cations, specifically  $Ca(Hf,Zr)O_3$ and (La,Gd)ScO<sub>3</sub>, is investigated in this report. The energy position of the Ce<sup>3+</sup> excitation and emission bands in these perovskites is compared to those of typical Al<sup>3+</sup> perovskites; we find a Ce<sup>3+</sup> 5d<sup>1</sup> centroid shift and Stokes shift that are larger versus the corresponding values for the Al<sup>3+</sup> perovskites. It is also shown that Ce<sup>3+</sup> luminescence quenching is due to Ce<sup>3+</sup> photoionization. The comparison between these perovskites shows reasonable correlations between Ce<sup>3+</sup> luminescence quenching, the energy position of the Ce<sup>3+</sup> 5d<sup>1</sup> excited state with respect to the host conduction band, and the host composition.

© 2010 Elsevier Inc. All rights reserved.

#### 1. Introduction

The relative simplicity of the  $Ce^{3+}$  energy levels has led to phenomenological models for the position of the 5d<sup>1</sup> centroid and the crystal field splitting of the 5d<sup>1</sup> levels [1,2]. There are also empirical rules to understand the parameters for  $Ce^{3+}$  photoionization quenching, starting with a minimum host bandgap for efficient  $Ce^{3+}$  luminescence in oxides [3] with further work towards understanding the position of the  $Ce^{3+}$  4f<sup>1</sup> ground state within the host lattice bandgap [4]. This work to quantify and understand  $Ce^{3+}$  luminescence has practical implications since  $Ce^{3+}$  luminescence is used in many efficient phosphors and scintillators, and additional progress towards the relationship between host composition and  $Ce^{3+}$  luminescence could lead to insight for the design of these materials.

One approach to understand host lattice effects on luminescence is to analyze the luminescence properties versus composition for a set of isostructural hosts [5]. For Ce<sup>3+</sup> luminescence, the ABO<sub>3</sub> perovskites could be instructive for comparisons with compositional variations of the larger A cation and the smaller, octahedral B cation (with a caveat for distortions in the octahedral arrays for different A/B combinations). Prior work in Al<sup>3+</sup> perovskites has studied the effect of composition on the energy position of the Ce<sup>3+</sup> 4f<sup>1</sup>  $\rightarrow$  5d<sup>1</sup> transitions [1] as well as photoionization quenching [6,7]. We expand upon this prior work by studying Ce<sup>3+</sup> luminescence in perovskite hosts that have B-site cations with *nd*<sup>0</sup> configurations, specifically LaScO<sub>3</sub>, GdScO<sub>3</sub>, CaHfO<sub>3</sub>, and CaZrO<sub>3</sub>. Using the relationship between the average

E-mail address: setlur@ge.com (A.A. Setlur).

cation electronegativity and A–O bonding in perovskites and the Ce<sup>3+</sup> 5d<sup>1</sup> centroid shift and crystal field splitting [1,2], it is possible to correlate the perovskite composition to the energy position of the lowest Ce<sup>3+</sup> 4f<sup>1</sup> → 5d<sup>1</sup> transition. In regard to the Ce<sup>3+</sup> luminescence quenching, while the absorption edge of these perovskites are at relatively low energies (<5.9 eV) [8,9], there are significant differences in the thermal quenching of the 5d<sup>1</sup> → 4f<sup>1</sup> Ce<sup>3+</sup> luminescence. A Born–Haber method [10] is used to analyze the photoionization thresholds and gives a qualitative correlation between the Ce<sup>3+</sup> luminescence efficiency and perovskite composition. Therefore, we demonstrate systematic composition of the lowest Ce<sup>3+</sup> 5d<sup>1</sup> level and photoionization quenching of Ce<sup>3+</sup> luminescence.

# 2. Experimental procedure

Standard solid-state synthesis methods using high purity CaCO<sub>3</sub>, La<sub>2</sub>O<sub>3</sub>, Gd<sub>2</sub>O<sub>3</sub>, Lu<sub>2</sub>O<sub>3</sub>, Sc<sub>2</sub>O<sub>3</sub>, HfO<sub>2</sub>, ZrO<sub>2</sub>, and CeO<sub>2</sub> were used to make powder samples. Ce<sup>3+</sup> ions replace the larger A-site cations at nominal levels of 0.1–1%, and for Ca(Hf,Zr)O<sub>3</sub>, there is no intentional charge compensation. The compositions reported here are nominal compositions and all samples are single-phase orthorhombic perovskites as determined by powder X-ray diffraction with the exception of LaScO<sub>3</sub> that has a trace ( < 5%) of unreacted La<sub>2</sub>O<sub>3</sub>. However, La<sub>2</sub>O<sub>3</sub>:Ce<sup>3+</sup> does not have any luminescence at liquid He temperatures [3] and should not interfere with the luminescence studies reported here.

Excitation and emission spectra were measured using a Spex Fluoromax 2 spectrofluorometer with a closed cycle He cryostat that has a cold finger attachment. Diffuse reflectance

<sup>\*</sup> Corresponding author. Fax: +15183876204.

<sup>0022-4596/\$ -</sup> see front matter  $\circledcirc$  2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2010.03.025

measurements used the same spectrometer with BaSO<sub>4</sub> (Kodak) as a reflectance standard. Time resolved measurements from 77 to 450 K used a LED excitation source filtered through a narrow band interference filter (10 nm width) driven by the amplified (Avantec) pulses of an Avtech AVP-C pulse generator. The emission was filtered through a 0.5 m McPherson monochromator and detected with a Hamamatsu R212 PMT detector. The time resolved fluorescence was recorded through a photon counting system consisting of an Ortec 567 time-to-amplitude converter in conjunction with an EG & G pulse height analyzer. The temporal response for this experimental setup was measured at 2 ns. Time resolved measurements above 300 K also used powder pressed into a Al plaque with cartridge heaters, thermocouples, and a Watlow temperature controller and a tripled Nd:YAG laser at 355 nm (JDS Uniphase) coupled into an Edinburgh F900 spectrofluorometer with a Peltier cooled R928-P Hamamatsu photomultiplier tube (PMT) detector. The FWHM of the laser pulse convoluted with the overall system response is  $\sim 1$  ns. Measurements of the thermoluminescence excitation spectra (TLES) followed previously reported procedures [11].

#### 3. Results and discussion

#### 3.1. Luminescence of CaHfO<sub>3</sub>: $Ce^{3+}$ and CaZrO<sub>3</sub>: $Ce^{3+}$

The emission and excitation of CaHfO<sub>3</sub>:Ce<sup>3+</sup> are indicative of typical Ce<sup>3+</sup> luminescence with a doublet emission band consisting that can be fit by two Gaussians separated by  $\sim 2000 \, \text{cm}^{-1}$ with  $\lambda_{max}$  ~ 430 nm (Fig. 1a). The maximum of the excitation band is at  $\sim$  335 nm ( $\sim$  29 900 cm<sup>-1</sup>) giving a Stokes shift of  $\sim$  6700 cm<sup>-1</sup>. When accounting for the  $\sim$  12 240  $\pm$  750 cm<sup>-1</sup> energy difference between the lowest energy  $Ce^{3+} 4f^1 \rightarrow 5d^1$  and  $Pr^{3+} 4f^2 \rightarrow 4f^15d^1$  transitions [12], the position of the CaHfO<sub>3</sub>:Ce<sup>3+</sup> excitation band reported here is in reasonable correlation with the position of the main Pr<sup>3+</sup> excitation band in CaHfO<sub>3</sub>  $(\sim 41700 \text{ cm}^{-1})$  [13]. In addition, the Stokes shift for Ce<sup>3+</sup> and  $Pr^{3+} 4f^{N-1}5d^1 \rightarrow 4f^N$  emission is similar (6700 cm<sup>-1</sup> for Ce<sup>3+</sup> vs.  $7600\,cm^{-1}$  for  $Pr^{3+})$  as expected. The Stokes shift for  $Ce^{3+}$ luminescence is also larger in comparison to the Al<sup>3+</sup> perovskites but is similar to the Stokes shift for LaLuO<sub>3</sub>:Ce<sup>3+</sup> [14] (Table 1), indicating a potential relationship between the B-site cation size and the Ce<sup>3+</sup> Stokes shift. The energy position of the lowest Ce<sup>3+</sup> 5d<sup>1</sup> level in CaHfO<sub>3</sub> is lower when compared to the Al<sup>3+</sup> perovskites (Table 1); this is primarily due to the lower electronegativity of both Hf<sup>4+</sup> and Ca<sup>2+</sup> versus Al<sup>3+</sup> and the trivalent lanthanides [15], respectively. The lower average cation electronegativity increases the  $O^{2-}$  anion polarizability and the covalency of the  $Ce^{3+}-O^{2-}$  bond (via an inductive effect), leading to a larger  $Ce^{3+}$  5d<sup>1</sup> centroid shift [2].

In spite of the low energy position of the absorption edge and the relatively large Stokes shift, CaHfO<sub>3</sub>:Ce<sup>3+</sup> has weak thermal quenching at room temperature (Figs. 1b and 2), and initial measurements of the quantum efficiency ( $\lambda_{ex} \sim 335$  nm) at room

temperature is ~30% of a standard BaMgAl<sub>10</sub>O<sub>17</sub>:Eu<sup>2+</sup> blue phosphor, a reasonably high value for unoptimized samples. As the initial decay time of CaHfO<sub>3</sub>:Ce<sup>3+</sup> begins to decrease, the decay profile deviates from a single exponential with an additional weak component that has a decay time of > 30 ns, slower than the radiative decay rate (Fig. 1b). This slower decay component is assigned to an afterglow luminescence that occurs after charge carriers are created, trapped at defects, and slowly detrapped from those defects. The correlation between the



**Fig. 1.** (a) Emission ( $\lambda_{ex}$ =335 nm) and excitation spectra of ( $\lambda_{em}$ =430 nm) of Ca<sub>0.99</sub>Ce<sub>0.01</sub>HfO<sub>3</sub> at ~10K and (b) Decay profiles ( $\lambda_{ex}$ =320 nm,  $\lambda_{em}$ =440 nm) versus temperature for Ca<sub>0.999</sub>Ce<sub>0.001</sub>HfO<sub>3</sub>. The background has been subtracted from these decay profiles.

| Та | bl | le | 1 |
|----|----|----|---|
|----|----|----|---|

| Emission and | excitation | peaks for | · Ce <sup>3+</sup> -do | ped | perovskites |
|--------------|------------|-----------|------------------------|-----|-------------|
|              |            |           |                        |     |             |

| Host               | Excitation (cm <sup>-1</sup> ) | Emission (cm <sup>-1</sup> ) | Stokes shift (cm <sup>-1</sup> ) | Reference |
|--------------------|--------------------------------|------------------------------|----------------------------------|-----------|
| CaHfO <sub>3</sub> | 29900                          | 23 200                       | 6700                             | This work |
| LaScO <sub>3</sub> | 30950                          | 23 300                       | 7700                             | This work |
| GdScO <sub>3</sub> | 28 650                         | 23 300                       | 5350                             | This work |
| YAlO <sub>3</sub>  | 33 000                         | 28 500                       | 4500                             | [26]      |
| GdAlO <sub>3</sub> | 32 500                         | 29 590                       | 2900                             | [27]      |
| LaAlO <sub>3</sub> | 31 750                         | No emission                  |                                  | [6]       |
| LaLuO <sub>3</sub> | 29850                          | 22 400                       | 7450                             | [12]      |



**Fig. 2.** Decay time versus temperature for La<sub>0.999</sub>Ce<sub>0.001</sub>LuO<sub>3</sub> ( $\lambda_{ex}$ = 320 nm,  $\lambda_{em}$ =440 nm for T < 300 K;  $\lambda_{ex}$ =355 nm,  $\lambda_{em}$ =460 nm for T > 300 K), La<sub>0.999</sub>Ce<sub>0.001</sub>ScO<sub>3</sub> ( $\lambda_{ex}$ =320 nm,  $\lambda_{em}$ =440 nm), Gd<sub>0.999</sub>Ce<sub>0.001</sub>ScO<sub>3</sub> ( $\lambda_{ex}$ =320 nm,  $\lambda_{em}$ =440 nm) and Ca<sub>0.999</sub>Ce<sub>0.001</sub>HO<sub>3</sub> ( $\lambda_{ex}$ =320 nm,  $\lambda_{em}$ =440 nm). The drawn lines are the best least-squares fit to Eq. (1) for the non-radiative rate with a constraint that the attempt frequency, *A*, is greater than 10<sup>13</sup> s<sup>-1</sup>.

 Table 2

 Activation energies and attempt frequencies for Ce<sup>3+</sup> 5d<sup>1</sup> ionization in perovskite hosts.

| Host               | <i>E<sub>a</sub></i> (eV) | A (s <sup>-1</sup> )       | Reference |
|--------------------|---------------------------|----------------------------|-----------|
| CaHfO <sub>3</sub> | 0.39                      | $1 \times 10^{13}$ (fixed) | This work |
| LaScO <sub>3</sub> | 0.29                      | $3.0 \times 10^{13}$       | This work |
| GdScO <sub>3</sub> | 0.26                      | $1.2\times10^{13}$         | This work |
| LaLuO <sub>3</sub> | 0.39                      | $2.1\times10^{13}$         | This work |
| GdAlO <sub>3</sub> | 0.29 (PL intensity)       | Not reported               | [27]      |
|                    | 0.34 (photoconductivity)  | $1.5 \times 10^{12}$       |           |
| LaAlO <sub>3</sub> | < 0                       |                            | [6]       |

emission quenching and the presence of a slower afterglow component in the decay profile is experimental evidence of photoionization-based quenching since photoionization is the first step for afterglow for excitation energies less than the bandgap [21]. The assignment of Ce<sup>3+</sup> luminescence quenching by photoionization in CaHfO<sub>3</sub> is then similar to other perovskites, such as GdAlO<sub>3</sub> [6] and LaAlO<sub>3</sub> [7], where Ce<sup>3+</sup> luminescence quenching has also been assigned to photoionization.

The analysis of the decay time versus temperature (Fig. 2) uses an Arrhenius relationship for the rate of thermal ionization from the  $Ce^{3+}$  5d<sup>1</sup> level

$$\Gamma_{PI} = A \exp(-E_a/kT) \tag{1}$$

where  $E_a$  is the activation energy and A is an attempt frequency. The high temperature (T > 300 K) afterglow complicates this analysis since afterglow makes the decay profiles non-exponential. We minimized the effect of the afterglow by analyzing the time constant of the initial component (0–50 ns) of the decay profile. Using this procedure, the least-squares fit of A and  $E_a$  for the CaHfO<sub>3</sub>:Ce<sup>3+</sup> decay time versus temperature for gives  $A=2.9 \times 10^{11} \text{ s}^{-1}$  and  $E_a=0.28 \text{ eV}$ . However, when comparing the values of A and  $E_a$  for quenching in CaHfO<sub>3</sub>:Ce<sup>3+</sup> with the other hosts studied in here (*vide infra* and Table 2), this attempt frequency is ~2 orders of magnitude lower for CaHfO<sub>3</sub>:Ce<sup>3+</sup> versus other perovskite hosts that have more typical values of  $A \sim 10^{13} \text{ s}^{-1}$ . When constraining the attempt frequency to be greater than  $10^{13}$  s<sup>-1</sup>, the least-squares fit gives  $E_a$ =0.39 eV. Since we have no physical reason for a 2 orders of magnitude lower attempt frequency in CaHfO<sub>3</sub>:Ce<sup>3+</sup>, except for an overestimate in the high temperature decay times due to afterglow, we use  $E_a$ =0.39 eV as the activation energy for Ce<sup>3+</sup> quenching in CaHfO<sub>3</sub> when comparing with other perovskite hosts.

In contrast to CaHfO<sub>3</sub>:Ce<sup>3+</sup>, the luminescence from CaZrO<sub>3</sub>: Ce<sup>3+</sup> is almost completely quenched at room temperature. However, CaZrO<sub>3</sub>:Ce<sup>3+</sup> shows a strong absorption band with a maximum at  $\sim$  335–340 nm (Fig. 3a), similar to the main Ce<sup>3+</sup> excitation band in CaHfO3:Ce3+ (Fig. 1a). This absorption band in  $CaZrO_3:Ce^{3+}$  is assigned to a  $Ce^{3+}$  center similar to the main  $Ce^{3+}$ center in CaHfO<sub>3</sub>. The similar energy position for the lowest Ce<sup>3+</sup>  $4f^1 \rightarrow 5d^1$  transition in CaZrO<sub>3</sub> and CaHfO<sub>3</sub> is reasonable since CaZrO<sub>3</sub> and CaHfO<sub>3</sub> are isostructural with similar ionic radii for Zr<sup>4+</sup> and Hf<sup>4+</sup> [16]. While there is virtually no emission intensity when exciting the main  $Ce^{3+}$  center at ~340 nm, there is a doublet emission band ( $\lambda_{max} \sim 550 \text{ nm}$ ) characteristic of Ce<sup>3+</sup> emission with excitation bands at  $\sim$  385 and 420 nm (Stokes shift of  $\sim\!4000\,cm^{-1})$  at 10K (Fig. 3a). While these luminescence excitation bands do not correspond to the main Ce<sup>3+</sup> absorption band that is measured in diffuse reflectance, the low temperature



**Fig. 3.** (a) Emission ( $\lambda_{ex}$ =430 nm) and excitation spectra of ( $\lambda_{em}$ =550 nm) of Ca<sub>0.99</sub>Ce<sub>0.01</sub>ZrO<sub>3</sub> at ~10 K with the room temperature diffuse reflectance; and (b) Integrated thermoluminescence excitation spectra of Ca<sub>0.99</sub>Ce<sub>0.01</sub>ZrO<sub>3</sub> (the *y*-axis has a logarithmic scale).

decay time of this emission is  $\sim$ 40 ns, characteristic of the allowed  $Ce^{3+} 5d^1 \rightarrow 4f^1$  emission transition. This emission band is assigned to a minority Ce<sup>3+</sup> center in CaZrO<sub>3</sub> that arises from differences in the local charge compensation when Ce<sup>3+</sup> replaces Ca<sup>2+</sup> in CaZrO<sub>3</sub>. This minority site apparently has a higher crystal field splitting and/or centroid shift since the lowest Ce<sup>3+</sup> 5d<sup>1</sup> level is at lower energy. There is still strong thermal quenching of this minority Ce<sup>3+</sup> luminescence with virtually no luminescence intensity at  $\sim$  200 K. TLES experiments directly indicate that the strong luminescence quenching for majority and minority Ce<sup>3+</sup> sites in  $CaZrO_3:Ce^{3+}$  is due to photoionization. The approximate onset of the thermoluminescence (TL) signal at  $\sim$ 435 nm corresponds to the minority  $Ce^{3+} 4f^1 \rightarrow 5d^1$  excitation band in CaZrO<sub>3</sub>, and there is stronger TL signal when exciting into the main Ce<sup>3+</sup> center in CaZrO<sub>3</sub> (Fig. 3b). Therefore, mobile charge carriers are formed when majority and minority Ce<sup>3+</sup> sites are excited at  ${\sim}80\,\text{K},$  indicating that the two main  $\text{Ce}^{3+}$  centers in CaZrO<sub>3</sub> ionize under  $4f^1 \rightarrow 5d^1$  excitation. Presumably, most (but not all) of the electrons in the conduction band reach quenching sites before recombining with Ce<sup>4+</sup> ions that are created by optical excitation and photoionization.

# 3.2. Luminescence of $LaScO_3:Ce^{3+}$ and $GdScO_3:Ce^{3+}$

The position of the Ce<sup>3+</sup> emission and excitation bands in LaScO<sub>3</sub>:Ce<sup>3+</sup> and GdScO<sub>3</sub>:Ce<sup>3+</sup> are also at lower energies versus the Al<sup>3+</sup> perovskites with larger Stokes shifts (Fig. 4 and Table 1). The Ce<sup>3+</sup> excitation spectrum in GdScO<sub>3</sub>:Ce<sup>3+</sup> has the Gd<sup>3+</sup>  $^{8}S_{7/2} \rightarrow ^{6}I_{J}$  absorption transition (Fig. 4b), evidence of Gd<sup>3+</sup>  $\rightarrow Ce^{3+}$  energy transfer from the spectral overlap between Gd<sup>3+</sup>  $^{6}P_{J} \rightarrow ^{8}S_{7/2}$  emission and Ce<sup>3+</sup>  $4f^{1} \rightarrow 5d^{1}$  absorption transitions. Since we cannot determine the energy position of each Ce<sup>3+</sup>  $5d^{1}$  level in the Sc<sup>3+</sup> perovskites, changes in the Ce<sup>3+</sup>  $5d^{1}$  centroid shift,  $\varepsilon_{c}$ , are quantified using the average cation electronegativity combined with RE<sup>3+</sup> $-O^{2-}$  bond lengths [2,17]

$$\varepsilon_c = 1.79 \times 10^{13} \sum_{i=1}^{N} \frac{\alpha_{sp}^i}{(R_i - 0.6\Delta R)^6}$$
(2)

$$\alpha_{sp} = 0.33 + \frac{4.8}{\chi^2_{av}}$$
(3)

where  $R_i$  is the RE<sup>3+</sup>-anion distance, N is the number of anions coordinated to  $Ce^{3+}$ ,  $\Delta R$  is the difference in ionic radii for  $RE^{3+}$ and  $Ce^{3+}$ , and  $\chi_{av}$  is the weighted average of the cation electronegativity. Using the crystallographic data for LaScO<sub>3</sub> [18], GdScO<sub>3</sub> [18], and LaAlO<sub>3</sub> [19], the calculated  $Ce^{3+}$  5d<sup>1</sup> centroid shifts are 15950, 15750, and  $14500 \text{ cm}^{-1}$ , respectively. The difference in the estimated Ce<sup>3+</sup> 5d<sup>1</sup> centroid shift between LaScO<sub>3</sub> and LaAlO<sub>3</sub> is close to the energy difference between the lowest energy  $Ce^{3+} 4f^1 \rightarrow 5d^1$  transition in these hosts (Table 1). Therefore, it is likely that the  $Ce^{3+} 5d^1$  crystal field splitting is similar for LaScO<sub>3</sub> and LaAlO<sub>3</sub>. Within perovskite hosts, the Ce<sup>3+</sup> 5d<sup>1</sup> crystal field splitting is dependent upon both the  $Ce^{3+}-O^{2-}$  bond length and the distortion from the ideal 12-coordinated A-site in cubic perovskites [1]. Typically, this Asite distortion is larger when the A and B-site perovskite cations are closer in size. Therefore, the larger A-site distortion in LaScO<sub>3</sub> versus LaAlO<sub>3</sub> may compensate for the longer bond length in LaScO<sub>3</sub> [18], giving a similar  $Ce^{3+}$  5d<sup>1</sup> crystal field splitting in LaAlO<sub>3</sub> and LaScO<sub>3</sub>. However, for GdScO<sub>3</sub>, the smaller  $Gd^{3+}-O^{2-}$ bond length [18] and the larger A-site distortion should lead to a larger crystal field splitting [1] versus both LaScO<sub>3</sub> and LaAlO<sub>3</sub>, explaining the lower energy for the lowest energy  $Ce^{3+}$   $4f^1\!\rightarrow\!5d^1$ transition.



**Fig. 4.** (a) Emission ( $\lambda_{ex}$ =340 nm) and excitation spectra of ( $\lambda_{em}$ =450 nm) of Gd<sub>0.999</sub>Ce<sub>0.001</sub>ScO<sub>3</sub> at ~10 K; and (b) Emission ( $\lambda_{ex}$ =325 nm) and excitation spectra of ( $\lambda_{em}$ =425 nm) of La<sub>0.999</sub>Ce<sub>0.001</sub>ScO<sub>3</sub> at ~10 K.

Comparing the Sc<sup>3+</sup> perovskites with the Hf<sup>4+</sup>/Zr<sup>4+</sup> perovskites, the estimated centroid shift in the Sc<sup>3+</sup> perovskites is ~1000 cm<sup>-1</sup> smaller ( $\varepsilon_c \sim 16700 \text{ cm}^{-1}$  in CaZrO<sub>3</sub>), due to the larger average cation electronegativity. Therefore, a lower energy Ce<sup>3+</sup> 5d<sup>1</sup> centroid can explain the relative energy differences between the lowest Ce<sup>3+</sup> 4f<sup>1</sup>  $\rightarrow$  5d<sup>1</sup> transition in LaScO<sub>3</sub> and CaHfO<sub>3</sub> (Table 1) since La<sup>3+</sup>/Sc<sup>3+</sup> and Ca<sup>2+</sup>/Hf<sup>4+</sup> have similar ionic radii [16]. However, differences in the 5d<sup>1</sup> centroid cannot account for the trend between CaHfO<sub>3</sub> and GdScO<sub>3</sub>. When comparing CaHfO<sub>3</sub> and GdScO<sub>3</sub>, the lower energy of the lowest Ce<sup>3+</sup> 4f<sup>1</sup>  $\rightarrow$  5d<sup>1</sup> transition in GdScO<sub>3</sub> is likely due to a stronger crystal field splitting of the Ce<sup>3+</sup> 5d<sup>1</sup> levels, from the smaller ionic radii of Gd<sup>3+</sup> [16] and the larger A-site distortion in GdScO<sub>3</sub>.

While the position of the Ce<sup>3+</sup> emission and excitation bands in the Sc<sup>3+</sup> perovskites is not unusual compared to other perovskites (Table 1), the Ce<sup>3+</sup> emission in LaScO<sub>3</sub> and GdScO<sub>3</sub> is strongly quenched at room temperature unlike CaHfO<sub>3</sub>:Ce<sup>3+</sup> and LaLuO<sub>3</sub>:Ce<sup>3+</sup> (Fig. 2). The Ce<sup>3+</sup> concentration in these Sc<sup>3+</sup> perovskites is ~0.1%, and the spectral overlap between the  $Ce^{3+} 4f^1 \rightarrow 5d^1$  absorption and  $Ce^{3+} 5d^1 \rightarrow 4f^1$  emission is small (Fig. 4). Therefore, energy migration and concentration quenching should be minimal in the thermal quenching of  $Ce^{3+}$  luminescence, making it intrinsic in nature.

The two main causes for intrinsic, thermally activated nonradiative transitions from the Ce<sup>3+</sup> 5d<sup>1</sup> are ionization or level crossing between the lowest energy 5d<sup>1</sup> level and the 4f<sup>1</sup> levels. In the Sc<sup>3+</sup> perovskites, the thermal quenching is assigned to Ce<sup>3+</sup> 5d<sup>1</sup> ionization as in LaAlO<sub>3</sub> [6], GdAlO<sub>3</sub> [7], and Ca(Hf,Zr)O<sub>3</sub> and not due to level crossing. First, if level crossing is the primary quenching mechanism, the position of the lowest  $Ce^{3+} 5d^{1}$  level and the Stokes shift should be indicators for the quenching temperature [20]. Comparing the energy positions of the lowest  $Ce^{3+} 5d^{1}$  level and the Stokes shift in LaScO<sub>3</sub>, GdScO<sub>3</sub>, CaHfO<sub>3</sub>, and LaLuO<sub>3</sub> (Table 1), there is no correlation between these factors and the quenching of  $Ce^{3+}$   $5d^1 \rightarrow 4f^1$  emission. For example, LaLuO<sub>3</sub>:Ce<sup>3+</sup> and LaScO<sub>3</sub>:Ce<sup>3+</sup> have similar Stokes shifts but the energy position of the lowest Ce<sup>3+</sup> 5d<sup>1</sup> level is much lower in LaLuO<sub>3</sub>. If level crossing is the primary quenching mechanism, LaLuO<sub>3</sub>:Ce<sup>3+</sup> should have a much stronger thermal quenching versus LaScO<sub>3</sub>:Ce<sup>3+</sup>; this is directly opposite to these experimental observations (Fig. 2). In addition, as the initial decay time of LaScO<sub>3</sub>:Ce<sup>3+</sup> and GdScO<sub>3</sub>:Ce<sup>3+</sup> decreases, the decay profile deviates from a single exponential with an additional weak component (intensity is < 10% of the main Ce<sup>3+</sup> decay component) that has a decay time of > 50 ns (Fig. 5). Similar to CaHfO<sub>3</sub>:Ce<sup>3+</sup>, this slower decay component is assigned to an afterglow luminescence that occurs after charge carriers are created, trapped at defects, and slowly detrapped from those defects. Again, the correlation between afterglow and a reduction in decay time is evidence for Ce<sup>3+</sup> luminescence quenching by photoionization.

The activation energy for thermal ionization from the lowest  $Ce^{3+} 5d^1$  level is estimated using the decay times for the initial fast component of the  $Ce^{3+}$  decay profile of LaScO<sub>3</sub>, GdScO<sub>3</sub>, and LaLuO<sub>3</sub> using Eq. (1) for thermal ionization rate,  $\Gamma_{Pl}$  (Table 2). The least-squares fit of the decay time versus temperature gives  $A=3.0 \times 10^{13} s^{-1}$  and  $E_a=0.29 eV$  for LaScO<sub>3</sub>;  $A=1.2 \times 10^{13} s^{-1}$  and  $E_a=0.29 eV$  for LaScO<sub>3</sub>;  $A=1.2 \times 10^{13} s^{-1}$  and  $E_a=0.39 eV$  for LaLuO<sub>3</sub> (Fig. 3a). These activation energies are comparable to the activation energy for luminescence quenching and photoconductivity in GdAlO<sub>3</sub>, ~0.3 eV [7] but are much smaller than the activation energy for luminescence quenching in YAlO<sub>3</sub>, 1.2 eV [22].



**Fig. 5.** Decay profile for Gd<sub>0.999</sub>Ce<sub>0.001</sub>ScO<sub>3</sub> ( $\lambda_{ex}$ =320 nm,  $\lambda_{em}$ =440 nm) versus temperature. The background has been subtracted from these decay profiles.

# 3.3. Comparison of $Ce^{3+} 5d^1$ ionization in perovskite hosts

From these experiments, thermally activated ionization is the main  $Ce^{3+} 5d^1 \rightarrow 4f^1$  luminescence quenching mechanism in the nd<sup>0</sup> perovskites, similar to the aluminate perovskites [6,7]. The key parameter for thermally activated ionization is the energy difference between the lowest  $Ce^{3+} 5d^1$  level and the host conduction band. This section discusses how this parameter is affected in the orthorhombic perovskites through the host bandgap, the position of the  $Ce^{3+} 4f^1$  ground state within the bandgap, and the position of the lowest energy  $4f^1 \rightarrow 5d^1$  transition. These parameters are connected using a Born–Haber relationship to estimate photoionization thresholds [10]

$$E_g = E_{Pl}(Ce^{3+}) + E_{CTB}(Ce^{4+} - O^{2-})$$
(4)

where  $E_g$  is the host lattice bandgap,  $E_{Pl}(\text{Ce}^{3+})$  is the Ce<sup>3+</sup> photoionization threshold from the 4f<sup>1</sup> ground state, and  $E_{CTB}(\text{Ce}^{4+}-\text{O}^{2-})$  is the energy for the Ce<sup>4+</sup>-O<sup>2-</sup> charge transfer band (CTB). The photoionization barrier from the lowest energy Ce<sup>3+</sup> 5d<sup>1</sup> level is then the energy of the lowest 4f<sup>1</sup>  $\rightarrow$  5d<sup>1</sup> transition subtracted from  $E_{Pl}(\text{Ce}^{3+})$ .

Within this analysis, the charge compensation for main  $Ce^{3+}$  center in CaHfO<sub>3</sub> and CaZrO<sub>3</sub> is assumed to be distant. This assumption is supported by the correlation of the position of the lowest  $Ce^{3+}$  5d<sup>1</sup> level to the estimated  $Ce^{3+}$  5d<sup>1</sup> centroid shift and the Stokes shift for  $Ce^{3+}$  luminescence in CaHfO<sub>3</sub>; local charge compensation would strongly affect the position of the lowest  $Ce^{3+}$  5d<sup>1</sup> level and the Stokes shift. However, this is a tentative assumption, and local charge compensation in the Hf<sup>4+</sup> and Zr<sup>4+</sup> perovskites could affect the position of the  $Ce^{3+}$  4f<sup>1</sup> ground state in the host bandgap [23]. In addition, as discussed in detail in Section 3.1, the estimate of  $E_a$  for CaHfO<sub>3</sub>:Ce<sup>3+</sup> is problematic. Therefore, it is important to note that this discussion is primarily qualitative.

The most straightforward comparison within these perovskites is between the main Ce<sup>3+</sup> centers in CaZrO<sub>3</sub> and CaHfO<sub>3</sub>. The coordination of the main Ce<sup>3+</sup> center is very similar in these perovskites as shown by the similar energy for the lowest energy  $Ce^{3+} 4f^1 \rightarrow 5d^1$  transition. Given the similar size and electronegativity for  $Hf^{4+}$  and  $Zr^{4+}$  [15,16], the energy position of the  $4f^1 Ce^{3+}$ ground state versus the valence band should be similar for the main Ce<sup>3+</sup> center in CaZrO<sub>3</sub> and CaHfO<sub>3</sub>. Therefore, the main difference between the main Ce<sup>3+</sup> centers in CaZrO<sub>3</sub> and CaHfO<sub>3</sub> is that the relative energy position of Ce<sup>3+</sup> 5d<sup>1</sup> level versus the host conduction band is lower by  $\sim 0.5 \text{ eV}$  due to a smaller CaZrO<sub>3</sub> bandgap. This difference leads to total quenching of the main center Ce<sup>3+</sup> luminescence in CaZrO<sub>3</sub> in comparison to CaHfO<sub>3</sub>:Ce<sup>3+</sup> where the onset for thermal quenching is  $\sim$  270 K. It is more difficult to make comparisons with the secondary Ce<sup>3+</sup> center in CaZrO<sub>3</sub> (Fig. 3a) since the local coordination is not known. In a qualitative sense, however, the lower energy position of lowest 5d<sup>1</sup> level for the minority Ce<sup>3+</sup> center in CaZrO<sub>3</sub> should increase the activation barrier for ionization as observed in the higher quenching temperature for this minority Ce<sup>3+</sup> center in  $CaZrO_3$ .

It is also possible to use Eq. (4) when analyzing Ce<sup>3+</sup> photoionization quenching in more complicated situations versus the relatively simple comparison between CaHfO<sub>3</sub>:Ce<sup>3+</sup> and CaZrO<sub>3</sub>:Ce<sup>3+</sup>. For example, CaHfO<sub>3</sub> and the Sc<sup>3+</sup> perovskites have similar values for the host lattice absorption edge [8,9] and the lowest energy Ce<sup>3+</sup> 4f<sup>1</sup>  $\rightarrow$  5d<sup>1</sup> transition (Table 1). However, the larger  $E_{Pl}$  in CaHfO<sub>3</sub> can be explained by an effective positive charge when Ce<sup>3+</sup> replaces Ca<sup>2+</sup>. An effective positive charge typically lowers the energy of metal-ligand charge transfer bands [24], leading to a larger  $E_{Pl}$  when using Eq. (4). Taking the thermal

activation energies for Ce<sup>3+</sup> photoionization in the Sc<sup>3+</sup> perovskites, the shift in the energy position of the Ce<sup>3+</sup> 4f<sup>1</sup> ground state versus the valence band between CaHfO<sub>3</sub> and the Sc<sup>3+</sup> perovskites is estimated to be at least 0.1 eV. In addition, the difference in the activation energy for luminescence quenching between LaS $cO_3:Ce^{3+}$  and LaLuO<sub>3</sub>:Ce<sup>3+</sup> is similar to the difference in the energy position of the lowest  $4f^1 \rightarrow 5d^1$  transition (Table 1). Using Eq. (4), the relative position of the  $Ce^{3+}$  4f<sup>1</sup> ground state versus the host conduction band should then be similar for LaScO<sub>3</sub> and LaLuO<sub>3</sub>. When comparing the scandate hosts, the lower energy position of the 5d<sup>1</sup> levels in GdScO<sub>3</sub>:Ce<sup>3+</sup> should increase the photoionization energy barrier in GdScO<sub>3</sub>:Ce<sup>3+</sup> versus LaScO<sub>3</sub>:Ce<sup>3+</sup>. However, the shorter  $Gd^{3+}-O^{2-}$  bond lengths in GdScO<sub>3</sub> will also increase  $E_{CTB}(Ce^{4+}-O^{2-})$  [25]. It appears that the higher CTB energy counteracts the lower 5d<sup>1</sup> energy since the activation energy for Ce<sup>3+</sup> luminescence quenching are similar for LaScO<sub>3</sub>:Ce<sup>3+</sup> and GdScO<sub>3</sub>:Ce<sup>3+</sup> (Fig. 2 and Table 2). Since this is mainly a qualitative analysis, further measurements and analysis are required to determine the accuracy of these estimates using the relationship in Eq. (4).

Finally, we briefly compare the  $Ce^{3+}$  quenching in these  $nd^{0}$ perovskites to the  $AI^{3+}$  perovskites. For example, the position of the lowest energy  $Ce^{3+}$   $4f^1 \rightarrow 5d^1$  transition of LaScO<sub>3</sub> and LaAlO<sub>3</sub> is similar (Table 1) as is the fundamental absorption edge [6,9]. However, Ce<sup>3+</sup> luminescence is completely guenched in LaAlO<sub>3</sub> at all temperatures [6]. While there are experimental uncertainties in the exact value of the host bandgap, the relative position of the Ce<sup>3+</sup> 4f<sup>1</sup> ground state in the bandgap can explain the differences between LaSCO<sub>3</sub> and LaAlO<sub>3</sub>. Since Al<sup>3+</sup> is smaller that Sc<sup>3+</sup> and the average La<sup>3+</sup> $-O^{2-}$  bond length is smaller in LaAlO<sub>3</sub> [19] versus LaSCO<sub>3</sub> [18],  $E_{CTB}(Ce^{4+}-O^{2-})$  should be at a higher energy in LaAlO<sub>3</sub> [25]. This should lead to a smaller  $E_{Pl}(Ce^{3+})$  for LaAlO<sub>3</sub> (Eq. (4)), correlating to the basic Ce<sup>3+</sup> luminescence quenching trends. The position of the  $Ce^{3+}$  ground state with respect to the valence band is at least  $\sim$  0.3 eV higher in LaAlO<sub>3</sub> versus LaScO<sub>3</sub> based upon the total quenching of Ce<sup>3+</sup> luminescence in LaAlO<sub>3</sub>.

### 4. Conclusions

In this report, Ce<sup>3+</sup> luminescence in several perovskite hosts has been described and compared. When comparing the Ce<sup>3+</sup> luminescence in these hosts to that in the Al<sup>3+</sup> perovskites, we find that the lower electronegativity of the B-site cations leads to a larger  $Ce^{3+} 5d^1$  centroid shift, generally lowering the energy position for the lowest energy  $Ce^{3+} 4f^1 \rightarrow 5d^1$  absorption transition. In addition, we find a larger Stokes shift in these  $Hf^{4+}/Zr^{4+}/$ Sc<sup>3+</sup> perovskites versus the Al<sup>3+</sup> perovskites. Finally, we show that non-radiative transitions in these materials are due to photoionization, as in the Al<sup>3+</sup> perovskites. However, in spite of the  $nd^0$  electronic configuration of the B-site cations giving relatively low energy bandgaps, the extent of Ce<sup>3+</sup> photoionization quenching is comparable to many of the Al<sup>3+</sup> perovskites. The differences in photoionization can be qualitatively correlated to the relative energy position of the lowest energy Ce<sup>3+</sup> 5d<sup>1</sup> level versus the host conduction band and the composition of these perovskites. Additional analysis and experiments could quantify

these comparisons and accurately place the energy position of the Ce<sup>3+</sup> 4f<sup>1</sup> ground state within the bandgap of these perovskites.

#### Acknowledgments

This presented in this report was partially supported by the US Department of Energy through contract# DE-FC26-06NT42934. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

#### References

- [1] P. Dorenbos, J. Lumin. 99 (2002) 283-299.
- [2] P. Dorenbos, Phys. Rev. B 65 (2002) 235110.
- G. Blasse, W. Schipper, J.J. Hamelink, Inorg. Chim. Acta 189 (1991) 77-80. [3]
- [4] P. Dorenbos, J. Phys.: Condens. Matter 15 (2003) 8417-8434.
- S.H.M. Poort, W.P. Blokpoel, G. Blasse, Chem. Mater. 7 (1995) 1547-1551.
- E. van der Kolk, J.T.M. de Haas, A.J.J. Bos, C.W.E. van Eijk, P. Dorenbos, J. Appl. Phys. 101 (2007) 083703.
- [7] E. van der Kolk, P. Dorenbos, J.T.M. de Haas, C.W.E. van Eijk, Phys. Rev. B 71 (2005) 045121.
- [8] W.J. Schipper, J.J. Piet, H.J. De Jager, G. Blasse, Mater. Res. Bull. 29 (1994) 23-30.
- [9] G. Lucovsky, J.G. Hong, C.C. Fulton, Y. Zou, R.J. Nemanich, H. Ade, D.G. Scholm, J.L. Freeouf, Phys. Status Solidi (b) 241 (2004) 2221-2235.
- [10] W.C. Wong, D.S. McClure, S.A. Basun, M.R. Kokta, Phys. Rev. B 51 (1995) 5682-5692
- [11] J. Fleniken, J. Wang, J. Grimm, M.J. Weber, U. Happek, J. Lumin. 94-95 (2001) 465-469.
- [12] P. Dorenbos, J. Lumin. 91 (2000) 155-176.
- [13] W. Jia, D. Jia, T. Rodriguez, Y. Wang, H. Kiang, K. Li, J. Lumin. 122–123 (2007) 55-57.
- [14] L. Zhang, C. Madej, C. Pédrini, B. Moine, C. Dujardin, A. Petrosyan, A.N. Belsky, Chem. Phys. Lett. 268 (1997) 408-412.
- [15] L. Pauling, The Nature of the Chemical Bond, Cornell University Press, 1960.
- [16] R.D. Shannon, C.T. Prewitt, Acta Crystallogr. B 25 (1969) 925-946;
- R.D. Shannon, C.T. Prewitt, Acta Crystallogr. B 26 (1970) 1046-1048. [17] P. Dorenbos, J. Lumin. 105 (2003) 117-119.
- [18] R.P. Liferovich, R.H. Mitchell, J. Solid State Chem. 177 (2004) 2188-2197.
- [19] S. Geller, V.P. Bala, Acta Crystallogr. 9 (1956) 1019-1025.
- [20] K.C. Bleijenberg, G. Blasse, J. Sol. State Chem. 28 (1979) 303-307. [21] A.A. Setlur, A.M. Srivastava, H.L. Pham, M.E. Hannah, U. Happek, J. Appl. Phys. 103 (2008) 053513.
- [22] L.-J. Lyu, D.S. Hamilton, J. Lumin. 48-49 (1991) 251-254.
- [23] S.A. Basun, S.P. Feofilov, A.A. Kaplyanskii, U. Happek, J. Choi, K.W. Jang, R.S. Meltzer, Phys. Rev. B 61 (2000) 12848-12853.
- [24] J. Alarcon, D. van der Voort, G. Blasse, Mater. Res. Bull. 27 (1992) 467-472.
- [25] G. Blasse, A. Bril, Philips Tech. Rev. 31 (1970) 304-334.
- [26] M.J. Weber, J. Appl. Phys. 44 (1973) 3205-3208.
- [27] J. Fava, G. Le Flem, J.C. Bourcet, F. Gaume-Mahn, Mater. Res. Bull. 11 (1976) 1-9.